Reconstructing Refractive Index Discontinuities from Truncated Phase-Contrast Projections

Mark A. Anastasio, Daxin Shi, Francesco De Carlo[†], Xiaochuan Pan*

Department of Biomedical Engineering Illinois Institute of Technology, Chicago, IL

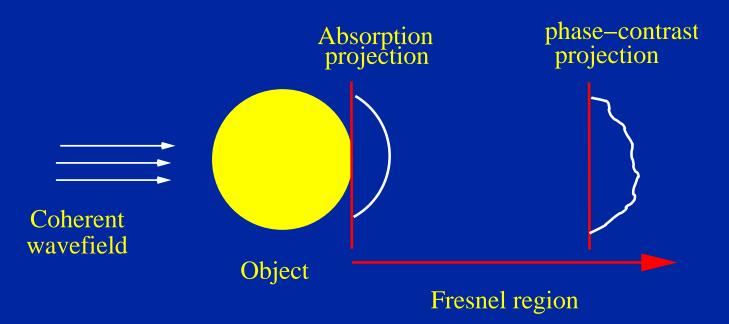
- † Advanced Photon Source, Argonne National Laboratory
 - * Department of Radiology, The University of Chicago

Outline

- Brief introduction to phase-contrast tomography
- A backprojection-only local tomography algorithm
- Interpretation of phase-contrast local tomography algorithms
- Reconstructing the magnitude of refractive index jumps.

Background: Phase-Contrast Tomography

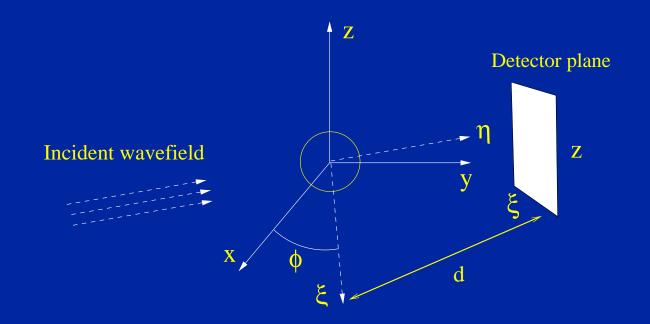
 When imaging with a spatially coherent X-ray beam, phase-contrast projection images are obtained:



 Phase-contrast tomography seeks to reconstruct the refractive index from a set of phase-contrast projections.

Phase-Contrast Tomography: Geometry

- Let the z-axis of a reference system (x,y,z) define the rotation axis for tomographic scanning.
- The rotated coordinate system (ξ, η, z) is related to the reference system by $\xi = x \cos\phi + y \sin\phi$, $\eta = y \cos\phi x \sin\phi$



Phase-Contrast Tomography: Measurement Data

- Let $I^{\eta=d}(\xi,z,\phi)$ denote measured projections.
- It can be shown that under near-field conditions [Bronnikov]:

$$I^{\eta=d}(\xi, z, \phi) = I^{\eta=0}(\xi, z, \phi) \left[1 - \frac{\lambda d}{2\pi} \nabla^2 \Phi(\xi, z, \phi) \right],$$

where

$$\Phi(\xi,z,\phi) = rac{2\pi}{\lambda} \int_{\mathbb{R}^2} dx dy \; a(x,y,z) \; \delta(\xi-x\cos\phi-y\sin\phi),$$

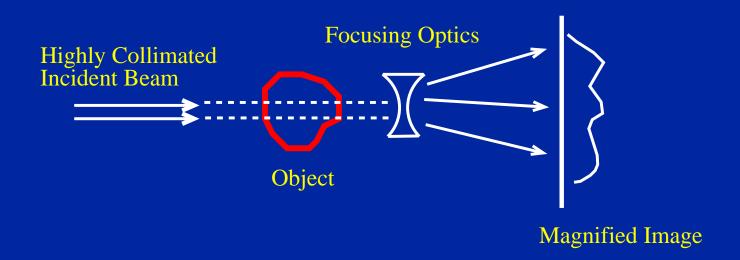
and a(x, y, z) = n(x, y, z) - 1 is the object function.

The Global Reconstruction Problem

- Goal: Reconstruct a(x,y,z) from knowledge of $I^{\eta=d}(\xi,z,\phi)$.
- Bronnikov has proposed an exact analytic reconstruction algorithm.
- In practice, the FBP algorithm is typically used to reconstruct an edge-map image.
- Both of these approaches assume untruncated projection data.

Phase-Contrast Local Tomography

- In many applications, the measured phase-contrast projections are truncated.
- In synchrotron imaging, the FOV may be intentionally reduced to increase spatial resolution.



Phase-Contrast Local Tomography

Questions:

- Can $\mathcal{F}a(x,y,z)$ be exactly reconstructed from truncated phase-contrast projections?
- If yes, what is the operator F?
- Simple reconstruction algorithms?
- To answer these questions, we can utilize conventional local tomography reconstruction theory.

Local Tomography Theory

- Local tomography methods have been developed for absorption CT.
- Local tomography seeks to reconstruct, not $\mu(x,y,z)$, but a filtered image denoted by $\Lambda\mu(x,y,z)$
- The operator $\Lambda = \sqrt{-\nabla^2}$ amplifies discontinuities in the reconstructed image.
- $\Lambda\mu(x,y,z)$ can be reconstructed from truncated (i.e., local) projection data.

(1) A Backprojection-Only Local Algorithm for Phase-Contrast Tomography

• Consider a data function $m(\xi, z, \phi)$:

$$m(\xi, z, \phi) = \frac{1}{d} \left[\frac{I^{\eta = d}(\xi, z, \phi)}{I^{\eta = 0}(\xi, z, \phi)} - 1 \right],$$

 By the definition of our imaging transform one obtains immediately:

$$m(\xi, z, \phi) = -\frac{\lambda}{2\pi} \nabla_{\xi, z}^2 \Phi(\xi, z, \phi) = -\nabla_{\xi, z}^2 R a(x, y, z),$$

where the 2D Radon transform $R\,a(x,y,z)\equiv p(\xi,\phi;z)$ acts on 2D planes that are perpendicular to the z-axis.

A BP-only Local Tomography Algorithm

• Consider b(x,y,z) that is formed by simply backprojecting $m(\xi,z,\phi)$:

$$b(x, y, z) = \int_0^{\pi} d\phi \ m(\xi, z, \phi)|_{\xi = x \cos \phi - y \sin \phi}.$$

Noting that $-\nabla^2=\Lambda^2_{\xi,z}$ one obtains

$$b(x,y,z) = \int_0^{\pi} d\phi \, \Lambda_{\xi,z}^2 p(\xi,\phi;z)|_{\xi=x\cos\phi-y\sin\phi}.$$

This formula looks similar to the 2D Lambda FBP algorithm.

A BP-only Local Tomography Algorithm

It can be shown that

$$b(x, y, z) = \Lambda_{x, y, z}^{2} a(x, y, z) * * \frac{1}{\sqrt{x^{2} + y^{2}}}$$

- A simple backprojection of $m(\xi, z, \phi)$ yields a filtered version of $\Lambda^2_{x,y,z} a(x,y,z)$.
- The $\frac{1}{\sqrt{x^2+y^2}}$ blurring is due to the 2D backprojection operation.

A BP-only Local Tomography Algorithm

Observations:

- The reconstruction is local no explicit filtering involved.
- The wave propagation physics performs the necessary projection filtering.
- For 2D objects, $\Lambda a(x,y,z)$ can be reconstructed exactly.
- When projections are acquired over a 4π solid angular range, $\Lambda a(x,y,z)$ can be reconstructed exactly.

(2) Direct Application of Λ Tomography

- Another reconstruction strategy is to apply a Λ tomography reconstruction algorithm directly to $m(\xi, z, \phi)$.
- By definition, this reconstruction approach is a local one.
- Here we interpret the reconstructed image mathematically to reveal its precise meaning.

Direct Application of Λ Tomography

• Consider the application of the 2D Λ FBP algorithm:

$$a_{lfbp}(x,y,z) = -\frac{1}{(2\pi)^4} \int_0^{\pi} d\phi \, \frac{\partial^2}{\partial \xi^2} m(\xi,z,\phi) \,|_{\xi=x\cos\phi-y\sin\phi} \,,$$

Let
$$A_{lfbp}(\vec{\nu}) \equiv \mathcal{F}_3\{a_{lfbp}(x,y,z)\}$$

It can be shown that

$$A_{lfbp}(\vec{\nu}) = \mathcal{F}_3\{\Lambda^2 a(x,y,z)\} \sqrt{\nu_x^2 + \nu_y^2}$$

Direct Application of A Tomography

- As with the BP-only algorithm, the 2D Λ FBP algorithm reconstructs an approximation of $\Lambda^2 a(x,y,z)$.
- The high-frequency components of $A_{lfbp}(\vec{\nu})$ in the ν_x - ν_y plane will be amplified by the term $\sqrt{\nu_x^2 + \nu_y^2}$.
- This will result in significantly amplified high-frequency noise components.
- For 2D objects, this reconstruction approach yields $a_{lfbp}(x,y,z)=\Lambda^3 a(x,y,z)$ exactly.

- In many practical applications, the 2D FBP algorithm is applied directly to the phase-contrast data $m(\xi, z, \phi)$.
- When the projections are untruncated, one reconstructs $\Lambda^2 a(x,y,z)$ exactly (Cloetens, 1997).
- Empirical findings have suggested that, for many object functions, the FBP algorithm may be capable of reconstructing an image from truncated phase-contrast projections that closely approximates $\Lambda^2 a(x,y,z)$.

Why?

- For simplicity, we consider here the 2D problem.
- Let the projections be truncated to detector coordinates $|\xi| \leq \xi_r$

I.e.,
$$m(\xi, \phi) = 0$$
 for $|\xi| \ge \xi_r$.

Reconstructed image:

$$a_r(x,y) = \frac{1}{4\pi^2} \int_0^{\pi} d\phi \int_{-\xi_r}^{\xi_r} d\xi' \frac{1}{\xi - \xi'} \left[\frac{\partial m(\xi,\phi)}{\partial \xi} \right]_{\xi = \xi'}$$

• We can decompose $a_r(x,y)$ into two terms:

$$a_r(x,y) = \underbrace{\frac{1}{4\pi^2} \int_0^{\pi} d\phi \int_{-\infty}^{\infty} d\xi' h_{\xi_r}(\xi - \xi') \left[\frac{\partial m(\xi,\phi)}{\partial \xi} \right]_{\xi = \xi'}}_{a_{pl}(x,y)}$$

$$-\underbrace{\frac{1}{4\pi^2} \int_0^{\pi} d\phi \left\{ \int_{\xi-2\xi_r}^{-\xi_r} d\xi' + \int_{\xi_r}^{\xi+2\xi_r} d\xi' \right\} \frac{1}{\xi-\xi'} \left[\frac{\partial m(\xi,\phi)}{\partial \xi} \right]_{\xi=\xi'}}_{e(x,y)},$$

where $h_{\xi_r}(\xi) \equiv \frac{1}{\xi}$ for $|\xi| \leq 2\xi_r$ and $h_{\xi_r}(\xi) \equiv 0$ otherwise.

• Consider the term $a_{pl}(x,y)$:

It can be shown that

$$a_{pl}(x,y) = E_{\xi_r}(r) * * \Lambda a(x,y),$$

where
$$E_{\xi_r}(r) \equiv R^{-1} \frac{\partial m_{\xi_r}(\xi)}{\partial \xi}$$
.

When
$$\xi_r \to \infty$$
, $E_{\xi_r}(r) \to \mathcal{F}_2^{-1}\{|\vec{\nu}|\}$

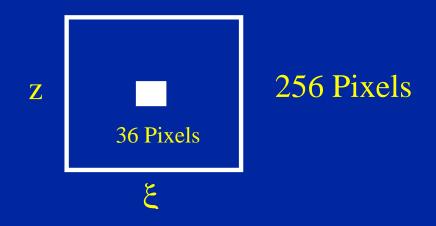
Therefore
$$a_{pl}(x,y) = E_{\xi_r}(r) * * \Lambda a(x,y) \rightarrow \Lambda^2 a(x,y)$$

- Consider the term e(x, y).
- e(x,y) describes how structures outside the ROI can influence the reconstruction of $a_{pl}(x,y)$ inside the ROI.
- When $\xi_r \to \infty$, $e(x,y) \to 0$, $a_r(x,y) \to \Lambda^2 a(x,y)$.
- It can be shown that e(x,y) is generally small except when there are a large number of discontinuities in a(x,y) that reside outside, but close to, the imaged ROI.

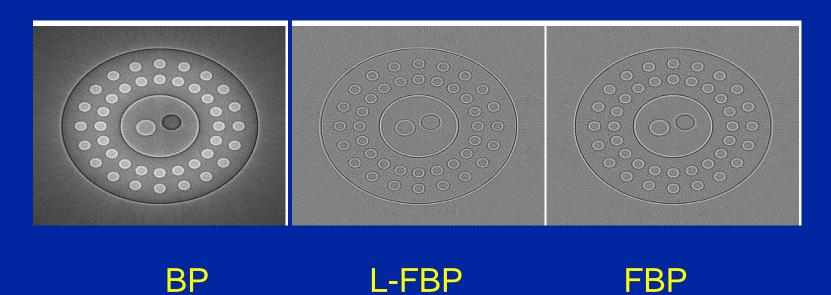
- For many objects of practical interest, the FBP algorithm may behave 'almost locally'.
- The locations of edges/boundares will be preserved.
- It may not be possible to accurately estimate the magnitude of the reconstructed discontinuities.

Numerical Results

- We simulated phase-contrast projection data using a Fresnel wave propagation model.
- Untruncated and truncated projections sets were generated.



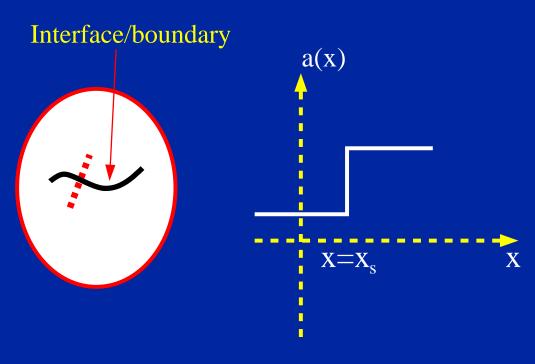
Reconstructions from untruncated projections:



Reconstructions from truncated projections:

Reconstructing the Magnitude of Discontinuities

 Knowledge regarding the magnitude of a discontinuity may be useful in many imaging applications.



$$D(x_s) = \lim_{t \to 0^+} \left[a(x_s + t) - a(x_s - t) \right]$$

Reconstructing the Magnitude of Discontinuities (2D Case)

- In the applied mathematics literature, several algorithms have been developed for estimating D(x,y) from $\Lambda\mu(x,y)$
- As described previously, we can easily reconstruct $\Lambda a(\vec{r})$ from truncated phase-contrast projections.
- Therefore, we can reconstruct the magnitude of the 'jumps' in $a(\vec{r})$, in addition their location as indicated in the $\Lambda a(\vec{r})$ image.
- This information provides a useful characterization of the refractive index distribution.

Reconstructing the Magnitude of Discontinuities (Katsevich and Ramm, Local Tomo. and the Radon T.F.)

Numerical Algorithm:

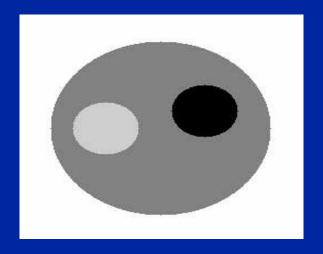
- Reconstruct $\Lambda a'(x,y) \equiv \Lambda a(x,y) * * w_{\epsilon}(x,y)$
- Compute normal vector to each boundary in $\Lambda a'(x,y)$
- Compute D(x,y) by inverting the relationship

$$\Lambda a'(\vec{r_0} + t\epsilon n_0) = \frac{D(\vec{r_0})\psi(t)}{\pi\epsilon} (1 + O(\epsilon)) + \psi_{\epsilon}(\vec{r_0}, t) + O(\epsilon \ln \epsilon), \quad \epsilon \to 0$$

 ψ , ψ_{ϵ} determined by w_{ϵ} .

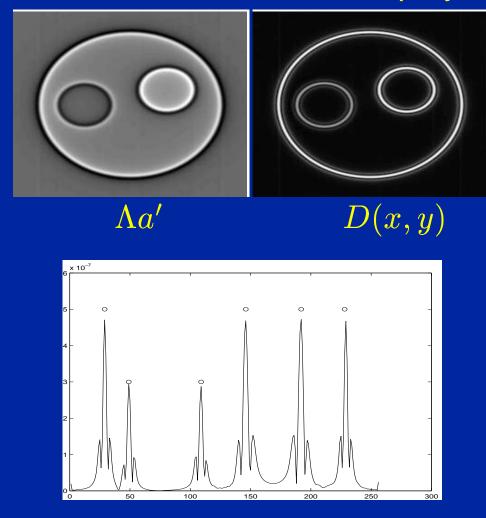
Simulation Studies

 Untruncated and truncated projections sets were generated corresponding to a numerical phantom.



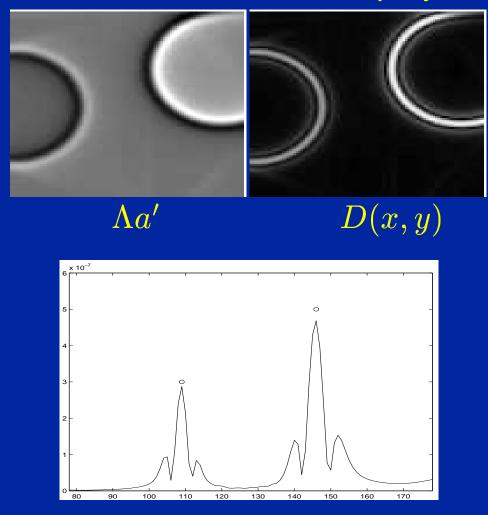
 We simulated 2D phase-contrast projection data using a Fresnel wave propagation model.

Reconstructions from untruncated projections:



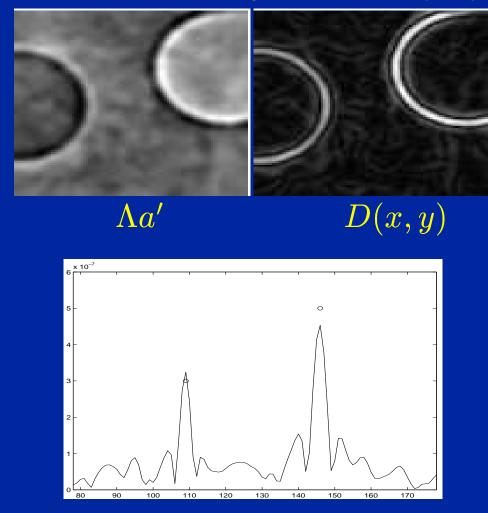
Profile through D(x,0)

Reconstructions from truncated projections:



Profile through D(x,0)

Reconstructions from noisy truncated projections:



Profile through D(x,0)

Summary

- We have investigated the local phase-contrast tomography problem.
- A simple backprojection of the data function represents an effective local tomography algorithm.
- For a wide class of objects, the FBP algorithm behaves like a local algorithm.
- For 2D problems, we can also reconstruct the magnitude of discontinuities.
 - The 3D problem is a current research project.